| | April - June 202192) Qualify the ProcessFor many manufacturing processes, it is a series of discrete processes that produce the end component. For example, a bulk material is cut down, machined, finished, and painted. Each processing step can be monitored and qualified. For AM, it is more of a continuous process that can present some advantages but also complications. Machine vendor qualified materials often come with processing recipes for the material that are dependent on part geometry, machine parameters, and environmental factors to produce parts with as consistent material properties as physically possible. In some cases, the machine parameter settings such as power, path speed, and path trajectory are proprietary to the machine vendor so the user must simply trust that the process will yield a component that meets specifications. One of the advantages touted by the AM industry is the ability to selectively change material properties by varying the process. We have yet to figure out how to qualify such material property variable components. 3) Qualify the ComponentIn the end, users want end components that meet required specifications. Material and process qualification are simply a means to the end goal a component or system that meets requirements. Here, many of the traditional quality systems for checking dimensional tolerances, surface finish, and internal material consistency are adequate. Quality methods are available to detect voids or defects but they are not well established to detect material property variations due to processing variations. For example, material properties are often a function of temperature so areas of the part that cool down more quickly than others will have different material properties. AM component qualification processes are sometimes more stringent since the process is relatively new to many companies. As the industry gains more confidence in AM, these processes will become less expensive and more streamlined. For many in the AM industry, the focus is on developing and selling machines, developing and selling materials, or selling end components. To move the entire industry from prototyping to production, all players will need to work more closely together. As an example, Hexcel focused first on qualifying the material, then qualifying the process, and finally producing final parts that are flying and qualified on several aerospace programs. In this case, Hexcel is responsible for each part of the process from materials, to process, to end components so all can be coordinated and traced. Where these functions are done separately, the supply chain will be required to work together to achieve the quality to which we have become accustomed with traditional manufacturing. Companies that have been successful with production applications have treated Additive Manufacturing as any new manufacturing process and have developed manufacturing and quality procedures that conform with the overall manufacturing and quality systems they have developed and established for the components and systems they produce. The key to accelerating the move from prototyping to production is treating additive manufacturing as any other manufacturing process and integrating it with the overall manufacturing production systems in place today. One of the advantages touted by the AM industry is the ability to selectively change material properties by varying the processBob Yancey
<
Page 8 |
Page 10 >