| | April - June 20218IN MY OPINIONWhen Additive Manufacturing/3D Printing was introduced to the market, it was called rapid prototyping which was an accurate description of the process--a method to quickly create physical prototypes from virtual representations of a product. The name has evolved over the years to additive manufacturing (AM) to capture the goal of the industry to rapidly create functional components in a more agile manner. This is the stated goal of the AM industry, but few have developed robust additive manufacturing production systems. For traditional manufacturing production, quality and verification processes are in place to certify and qualify the material, manufacturing process, and end-use components. Materials are generally produced in bulk form and qualified by material sampling. Material performance data is generated through physical testing to provide input to design engineers, so they know the right shape and size of the component to meet the performance requirements. For most metals and plastics, the test procedures are well understood, and testing can be carried out relatively quickly. For composite materials, the test procedures can be very involved, time-consuming, and expensive. This is because composites are generally made of two distinct materials, so the testing has to account for all of the variables in material composition, form, fiber direction, and how they are manufactured. Manufacturing processes, including cutting, molding, stamping, curing, and finishing are then qualified using a combination of machine monitoring and inspection systems. Finally, quality processes are put in place to verify final components meet all required specifications. For additive manufacturing, the industry is still learning how to fit a new manufacturing process into an established manufacturing ecosystem. For many additive manufacturing processes and materials, they are more like composites rather than plastics or metals since the material properties are dependent on material deposition or consolidation direction, processing parameters, and the part geometry. In general, material properties are not uniform throughout an additively manufactured part which is also the case for composites. Below are three areas where the overall industry, including equipment manufacturers, material suppliers, and end users can work together to move additive manufacturing from prototyping to production.1) Qualify the MaterialMany AM systems are open-material systems which can use a variety of material systems. In reality, these open material systems are usually relegated to prototyping. At the other end of the spectrum, machine vendors qualify certain materials for their systems and ensure the materials meet specifications. These materials are much more expensive than open-material systems, but they come with reliable batch data on the material quality. Even with this data, many companies will still conduct their own material qualification effort. In addition to qualifying the materials, how the material is stored, the age of the material batch, and the processing parameters used during the build all affect the material properties. As mentioned, the material properties are generally not uniform so print direction, processing parameters, and part geometry all factor into the qualification of the material. A streamlined and robust material qualification process for additive manufacturing will be required for production applications.MAKING THE SWITCH FROM PROTOTYPING TO PRODUCTIONBy Bob Yancey, Business Development Director, Hexcel
< Page 7 | Page 9 >